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The nonlinear Boltzmann and Boltzmann-Lorentz equations are used to de- 
scribe the dynamics of a tagged particle in a nonequilibrium gas. For the special 
case of Maxwell molecules with uniform shear flow, an exact set of equations for 
the average position and velocity, and their fluctuations, is obtained. The results 
apply for arbitrary magnitude of the shear rate and include the effects of viscous 
heating. A generalization of Onsager's assumption of the regression of fluctua- 
tions is found to apply for the relationship between the equations for the average 
dynamics and those for the time correlation functions. The connection between 
fluctuations and dissipation is described by the equations for the equal-time 
correlation function. The source term in these equations indicates that the 
"noise" in this nonequilibrium state is qualitatively different from that in 
equilibrium, or even local equilibrium. These equations are solved to determine 
the velocity autocorrelation function as a function of the shear rate. 
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1. I N T R O D U C T I O N  

T i m e - d e p e n d e n t  f l u c t u a t i o n s  in  s y s t e m s  f a r  f r o m  e q u i l i b r i u m  c a n  p r o v i d e  a 

m u c h  r i c h e r  d e s c r i p t i o n  of  t he  d y n a m i c s  of  a m a n y  b o d y  s y s t e m  t h a n  t he  

c o r r e s p o n d i n g  e q u i l i b r i u m  f l u c t u a t i o n s .  T h e  d e s c r i p t i o n  of  s u c h  f l u c t u a -  
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tions has been developed in recent years at the kinetic (1-4) and hydrody- 
namic(5 8) levels, from both phenomenological and more fundamental 
formulations. A complete theory comparable to that for equilibrium fluctu- 
ations is still evolving, and applications are limited by the difficulty of 
solving the associated nonlinear equations. The objectives of this and the 
following paper are to illustrate some of the similarities and differences 
between fluctuations in nonequilibrium states and those in equilibrium, for 
a case where the theory is well-established and exact calculations are 
possible. The system considered is a tagged particle in a low density gas of 
Maxwell molecules (9) (r -5 force law). The fluid is considered in a state of 
uniform shear flow with possibly large shear rate and the tagged particle is 
assumed to be mechanically equivalent to the fluid particles. In the follow- 
ing paper the case of a, tagged particle with large mass is considered. 

Two general questions regarding fluctuations far from equilibrium are 
addressed here: (1) What is the relationship (if any) of the dynamics of the 
average variables to that of their fluctuations? (2) How is the "noise" in the 
system characterized for these variables? In equilibrium, the answer to the 
first question is given by Onsager's assumption on the regression of fluctua- 
tions (10), i.e., that after an initial aging period the time correlation functions 
decay according to the same (linear) equations as those for the associated 
macroscopic variables. Also, the "noise" in equilibrium is simply deter- 
mined by the thermodynamic parameters of the equilibrium ensemble. To 
describe the corresponding results obtained here for the nonequilibrium 
state of uniform shear flow, let z denote a matrix whose elements are the 
position and velocity of a tagged particle, 

Z,~ ~--~(qT,VT) (1.1) 

The average values of z and their fluctuations are defined by 

z~(t)  - (zo( t ) )  (1.2) 

G~r ~) =--- (z~(t  + ~')[ zfl 0") - (zf l(~))])  (1.3) 

where the brackets denote an average over the initial state of the system, 
assumed given at t -- 0. The equations obtained below for Z~ and G ~fi have 
the form 

zo + J . ~  z~ = o (1.4) 

a_ ao~(t,.O + j ~ o  GoB(t,~) = 0 (1.5) 
8t 

a c~z(o,~) + _zo co~(o,~) + j~o  c~o(o,~) = ~ z ( , )  (1.6) a~- 

where J ~  is a constant matrix whose elements depend linearly on the 
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shear rate. The source term 2~B in Eq. (1.6) depends on time, owing to the 
viscous heating, and is a nonlinear function of the shear rate. Equations 
(1.4)-(1.6) have the same general form as those recently shown to apply for 
nonequilibrium fluctuations in a simple fluid, at both the kinetic and 
hydrodynamic levels. ~4'8) Equations (1.4) and (1.5) may be viewed as a 
generalization of Onsager's assumption on the regression of fluctuations 
where the regression matrix, S ,  depends on the parameters of the nonequi- 
librium state. Equation (1.6) is a generalization of the fluctuation- 
dissipation theorem relating the dissipation matrix, S ,  to the equal time 
fluctuations. The source term, ~ ,  is related to the "noise" in the system (for 
a Langevin or Fokker-Planck model, _@ is simply the amplitude for the 
correlation of the Langevin force, as is shown in the following paper). In 
the equilibrium state 2 c~ 2 p l k B T  , where ~ is the friction constant and T is 
the temperature. Here it is found that 2 depends on the irreversible part of 
the fluid stress tensor as well so that there is a qualitative difference 
between equilibrium (or even local equilibrium) and nonequilibrium noise. 

The solution to Eqs. (1.4)-(1.6) is straightforward but lengthy to 
obtain. Only the velocity autocorrelation function is considered in some 
detail. Several new features appear in contrast to the equilibrium case. 
First, the average is not stationary, owing to viscous heating in the fluid, so 
the correlation function depends on both times, t and ~-, in addition to the 
initial time. Furthermore, it does not decay to zero for large t. Instead it 
approaches a value characterized by the tagged particle velocity coming 
into equilibrium with the local fluid velocity. As expected, there is an 
anisotropy due to the shear flow. The latter produces an effective force on 
the particle in the direction of the flow. This force is proportional to the 
velocity in the direction of the shear, which competes with the collisional 
damping of the correlation function. Finally, the effects of viscous heat- 
ing and anisotropy are reflected in the equal time correlation function 
~vi(~-)vj(~-)~ through the source term, _~, in Eq. (1.6). 

There has been a related discussion of Brownian motion in uniform 
shear flow based on a modified Langevin equation or Fokker-Planck 
equation. ~ )  In the paper following this one, (12) the Boltzmann-Lorentz 
operator is expanded for the case of small mass ratio between fluid and 
tagged particles. The result is a Fokker-Planck equation for tagged particle 
motion in a nonequilibrium fluid, with an associated Langevin description. 
Its relationship to Ref. 11 and other related work is discussed there. 

2. K I N E T I C  T H E O R Y  

The kinetic equations for fluctuations and transport in a low density 
nonequilibrium gas have been derived in Ref. 1 (the derivation there is 
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carried out explicitly only for hard spheres, but applies for continuous 
potentials as well). The variables of interest are the phase space densities 
for the fluid and tagged particle, f ( x ,  t) and h(x,  t), respectively, and the 
phase space fluctuations for the tagged particle, 

C ( x  1,t  + T;x2,~- ) 

= ( 8 ( x  1 - ~T( t  + 1"))[8(X 2 -  ~T(~')) -- (8(X 2 -  ~T(~-))}]) (2.1) 

Here, x denotes the position and velocity for the tagged particle. The caret 
(^) above the variable denotes the degrees of freedom being averaged, in 
contrast to the associated field point. The equations governing the time 
dependence of f, h, and C are (1) 

(-D, 

+,l  :::,<I 

The function C(1,2) is the same as that defined by Eq. (2.1), in an 
abbreviated notation. The bilinear Boltzmann operator, J, is (9) 

J[A,B] =--fdV2fo: db bfo2~'dgJlv ' - v21(A (q i , r  vl) 

- A  (ql ,v2)B(ql ,Vl) ) (2.5) 

where b is the impact parameter and a tilde on the velocity indicates its 
value after a binary collision. [It is understood in Eq. (2.4) that the domain 
for operation of J is the variable labeled 1).] The conditions for the validity 
of Eqs. (2.2)-(2.4) are discussed in Ref. 1. Equation (2.2) is the usual 
nonlinear Boltzmann equation. If f is replaced by a Maxwell-Boltzmann 
distribution in Eqs. (2.3) and (2.4), these degenerate to the linear Boltz- 
mann-Lorentz  equations for fluctuations and transport of a tagged particle 
in an equilibrium fluid. 

Fluctuations in any property associated with the tagged particle can be 
determined from the function C(1, 2). For example, let z be given by Eq. 
(1.1). Then the fluctuations in z are given by 

G~B(t,,c) = f dx idx2z~ (x l ) z~ (x2 )C(x  , , t  + 1-; x2,~- ) (2.6) 

In particular, the velocity autocorrelation function is 

G~jV(t, ~) = f dx x dxzvt iv2jC(x t , t + ~; x 2 , ,r) (2.7) 
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Steady shear flow corresponds to a fluid between two parallel plates in 
relative motion. If the flow velocity is taken to be zero at q = O, then it has 
the form 

ui( q, t) = aijqj (2.8) 

where a o. is a constant tensor with zero diagonal elements and 

a~ajk = 0 (2.9) 

To obtain a unique solution to Eqs. (2.2)-(2.4) it is necessary to specify 
initial conditions (at t = 0). For simplicity, the initial fluid state is taken to 
depend on the position only through the flow velocity, 

f ( x ,  0) =/0(v - u(q)) (2.10) 

Similarly, the tagged particle is taken to be located initially at the origin 
with the same velocity distribution, 

1 /o(V - u(q))  (2.11)  h(x ,O)  = 8(q) n 

where n is the initial (uniform) fluid density (the factor 1/n  is required by 
the different normalizations o f f  and h). The initial condition for C(I, 2) is 
determined from the definition, (2.1), 

C ( x  1 ,~-; x2,~- ) = h ( x l  , r  x 2 ) -  h(x2,~-)] (2.12) 

The special form of the initial condition, (2.10), suggests a transforma- 
tion to a local rest frame in which the initial distribution, f0, is strictly 
uniform in space. By analogy with the Galilean transformation, a new set 
of variables (q', v') are defined by 

v' = v - u(q), q' = q - u(q)t (2.13) 

or, with Eq. (2.8), 

v; = vi - a~jqj, q; = Ao(t)q J (2.14) 

The tensor Ay(t) is given by 

A0(t) = ~0 - aot (2.15) 

Because of the property (2.9) for shear fields, A/j(t) defines a one-parameter 
group of transformations, i.e., 

aik(t)Akj(q" ) = A/j(t -4- 7), A~ ' ( t )  = AO. ( - t )  (2.16) 

Use of Eqs. (2.16) allows the inversion of Eqs. (2.14) to give 

�9 = I)~. "l- aijqj' , qi = A/ j ( -  t)qj (2.17) 

It is now straightforward to transform the kinetic equations (2.2)-(2.4), and 
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the associated initial conditions, with the results 

(~ t  + L)f'= J[f ',f ' ] (2.18) 

( -~  +L)h'=J[f',h'] (2.19) 

0 + L ) C ' =  J[ f ' ,C ' ]  (2.20) 

with 

f ' (x,  O) = fo(v) 

1 fo('O h'(x,O) = 8(q) n 

C'(x 1 , r ; x 2 , r  ) = h'(x 1 , r ) [ 8 (x ,  - x2) - h ' (xz , r ) ]  (2.21) 

and the operator, L, is 

O _ %vj ~ (2.22) 

The prime on a function denotes the transformed function of the new 
variables (the prime on the variables themselves has been deleted for 
notational simplicity). To obtain Eqs. (2.21) use has been made of the 
relation 

1 8 ( x ' -  
8(x - x0) - D e t J  

where D e t J  is the determinant of the Jacobian for the transformation. The 
latter is equal to 1. It has also been observed that the collision operators are 
invariant under the transformation, (2.14). 

A similar change of variables has been used by Yamada and Ka- 
wasaki. (13) Their velocity transformation is the same, but they transform 
the coordinate according to q ' =  q. The coordinate transformation used 
here is that for a change from Eulerian to Lagrangian coordinates. An 
advantage of this representation is that the fluid distribution, f '(x,  t), is 
independent of the position variable. This follows from the fact that the 
initial condition is spatially homogeneous and Eq. (2.18) itself is transla- 
tionally invariant. Furthermore, the reduced distribution for the velocity of 
the tagged particle, 

/7'(v, t) - - f  dqh'(x, t) (2.23) 

is proportional to f ' (v,  t) for all t, i.e., 

/7'(v, t) = 1 f '(v,  t) (2.24) 
n 

This may be proved by noting that the qY-----nh'-f', obeys a linear 
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first-order differential equation with homogeneous initial condition, 

(~t-aijVj~vi)eo'=JIf',q~'] (2.25) 

In particular, the equivalence of these two distributions implies that the 
velocity moments of the tagged particle in the rest frame may be deter- 
mined from the corresponding velocity moments of the fluid distribution. 

3. M A C R O S C O P I C  D Y N A M I C S  

In this section, the kinetic equations are used to obtain a contracted, or 
"macroscopic," description in terms of the hydrodynamic variables for the 
nonequilibrium fluid state, and the average position and velocity for the 
tagged particle. Consider first the gas as described by Eq. (2.18) in the rest 
frame. Since f'(x, t) is independent of position for all times, Eq. (2.18) 
simplifies to 

( ~t -a"v9-~- ] f '  = J[ f" J OV i ]J (3.1) 

The hydrodynamic equations may now be obtained in the usual way (9) by 
multiplying Eq. (3.1) with the summational invariants (1, v, v 2) and integrat- 
ing over the velocity. The contributions from J vanish, leading to the 
hydrodynamic equations for uniform shear flow: 

on( t )  
Ot - 0 = u(q,t)  (3.2) 

 e(t) 2 
o t  - 3 a i jP i j ( t )  (3.3) 

Here n is the density, p is the pressure, and the pressure tensor is defined by 

Po(t) = f dv mvivjf' (3.4) 

where m is the mass. The temperature is defined by p = nkBT. The 
independence on n, p, and Pq on q is a consequence of the homogeneity of 
f ' .  Equation (3.2) indicates that the constancy of the initial flow field and 
density is preserved in time. Consequently, the only dynamical variable is 
the temperature, which increases at a rate determined by the irreversible 
stress tensor. To calculate the latter, an equation for P,j is obtained by 
multiplying Eq. (3.1) with mviv j and integrating over the velocity: 

~tP~ + aikPkj + aj~Pik= f dvmvivjJ[ f', f '] (3.5) 

Up to this point, the results apply for a wide class of interatomic forces. In 
general the evaluation of the term on the right side of Eq. (3.5) would entail 
the introduction of some approximation scheme. However, for the special 
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case of Maxwell molecules this term can be evaluated exactly in terms of P,j 
and the pressure. The details are carried out in the Appendix, with the 
result that Eq. (3.5) becomes (14'15) 

(~t+P3)Pij4-aikPkj-t-ajkPik=P3]3~ij (3.6) 

where 1'3 is an eigenvalue of the Boltzmann operator. Equations (3.3) and 
(3.6) may be solved to determine the time dependence of the pressure. (A 
similar analysis has been given by Zwanzig using a model Boltzmann 
equation. (~6) For the case of Maxwell molecules the results of the model 
equation agree with the exact results here.) The explicit calculation of P,~(t) 
is briefly described in the Appendix. It is found that there are two short 
time transients after which the temperature increases exponentially in time. 

Next, consider the average dynamics for the tagged particle. Multipli- 
cation of Eq. (2.19) successively by q and v, and integration over these 
variables gives 

OR i' 
0t - A,j(t) Vj' 

0V/ 
+aijV; = f dxviJ[ f', g'J (3.7) at 

Here R' and V' denote the average position and velocity of the tagged 
particle in the rest frame. Again, for Maxwell molecules the right side of the 
velocity equation can be calculated, with the result [see Appendix, Eqs. 
(A1) and (A7)], 

f d x v J [ f ' ,  g']  = - ~, V,,' (3.8) 

Here p~ is an eigenvalue of the Boltzmann-Lorentz operator. Substitution 
of (3.8) in (3.7), and transformation back to the laboratory frame then gives 
the equations of motion for the tagged particle: 

DR _ V,  0 V  _ ~ l ( V  - u ( R ) )  (3 .9 )  
at at 

4. FLUCTUATIONS 

The calculation of G~(t, ~c) is simplified by representing it in terms of 
the local rest frame variables using (2.17), 

R~(t,.r) = f dx,dx2z~(xl)z~(xz)C'(x I ,t + I";x2,~- ) (4.1) 

where R ~ (for a or fl = q, v) are the position and velocity correlations in 
the rest frame. A set of equations for R~(t , f )  with t ~ 0 is immediately 
obtained by multiplying Eq. (2.20) with vi and qi and integrating. For 
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Maxwell molecules the moments of the Boltzmann-Lorentz operator can 
be calculated exactly (see Appendix), and the resulting equations are 

+ 1, w + a w ~ 0 ( ~  l)g9 (t ,T)ikRkj ( , , 7 ) ( 4 . 2 )  

~t  Rq~(t '  r) - A i ~ ( t ) R f f ( t ,  ~) = 0 (4.3) 

for a = q, v. Transforming back to the laboratory frame then gives 

3 q~ va O--t G,j ( t , r)  - G 9 (t,~') = 0 (4.4) 

+ p va _ qa 
~ 0 ( ~ t  1) G~ ( t , r ) v l a i k G  ~ ( t , r ) ( 4 . 5 )  

Equations for the equal time correlation functions, R~B(0,~-), are 
obtained in a similar way by integrating Eq. (2.19) for h' with the com- 
ponents of v and q. Again, the collision integrals can be evaluated (see 
Appendix), and the resulting equations are 

-~T vq vq Rqq(o, 'r)  - Aik('r)Rkj (O,'c) -- Ajk('C)Rki (0,~-) = 0 (4.6) 

+ v t R 9 (0, r)  - Ajk('C)Rki (0, r) + aikRkj (0, 'r) = 0 (4.7) 

( ~  +~'1 + v2)R,~(0, ~') + aikR~;(O, "c) + ajkR~v(O, r) -- 1 v28/jRk~)~(0, r) 

= 1 9 ( r  ) ( 4 . 8 )  

t~19 where RkV~ is the trace of the tensor R 9 , and 
-- V] 

190. ) _ ~'l P v2 t,~0") + 69 p P0-) (4.9) 

Here the pressure tensor has been divided into its diagonal and traceless 
parts, 

= + (4 .10)  

where the traceless tensor, t~(T), represents the irreversible part of the 
momentum flux in the fluid. Also in Eq. (4.9), p = Mn,  where M is the 
mass. Transformation of Eqs. (4.6)-(4.8) to the laboratory frame gives the 
desired results: 

a Gqq (0, ~. ) G~q (0, .r ) qv - -  - - G,~ ( 0 , ~ - )  = 0 ( 4 . 1 1 )  
0r 

(-~ + Pl)a~q(0,'r) - Plaikaqkfl(O,'r ) -- Govv (o ,q ' )=O (4.12) 
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with 

i k. 1 R V(0, )Ia = . ,  + 

+ ( P , -  ~2) t/~0-) + R,2 (0,~') - 38ijRkk(O,'r) 
P 

The expression for D/j0- ) may be simplified further using the equivalence 
(2.24), which implies 

R~'( 0, ~-) = P/j0")/P (4.14) 

and 

2VlkBT('r) 
D/j(z) - M a9 + 2(~, - v2)t~j(r)/p (4.15) 

The sets of equations (3.3) and (3.6) for the fluid, (3.9) for the average 
tagged particle motion, (4.4) and (4.5) for the two-time fluctuations, and 
(4.11)-(4.13) for the equal time fluctuations give a closed description of the 
dynamics of the tagged particle and its fluctuations. Inspection of these 
equations shows they may be expressed in the general form of Eqs. 
(1.4)-(1.6), with _0 and 2 defined by 

0 1 - 1  
J ~  -P l  a [ ~l) (4.16) 

t'olo  
- ~  ~ ~0-']-~',D] (4.17) 

where ~ a n d / )  are the tensors whose elements are a9 and Dg, respectively~ 
[This abbreviated notation implies a contraction of the tensors ~ and D 
with associated vector elements in the matrix multiplication. For example, 
J~B ZI3 = ( -  Vi, - plaijRj + ~'1Vi).] In the equilibrium state the noise term, 
D,j, reduces to (2keT/M)8~j as expected from the usual Langevin theory of 
equilibrium fluctuations. More generally D,j depends on the nonequilibrium 
state both through the time dependence of T and the irreversible stress 
tensor t,~. Further comment on this is given in the last section. 

5. VELOCITY AUTOCORRELATION FUNCTION 

The solution of Eqs. (3.9) determining the average position and veloc- 
ity of the tagged particle is straightforward to obtain, with the results 

Ri(t)= A~j(-t){ Rj(O)+ 1~1 [aJk( 2 ) ( 1 -  e - . l t ) +  2ajkte-~,t] V~(O)} 

Vi(t ) = Ui(O ) -[- Vij(t)Vj'(O ) (5.1) 
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Here Vi'(0 ) = 1I,,.(0 ) - U~(0), Ui(0 ) = acRj(O)and 

a~j ,,t] T q ( t )  = e - " ' S i j  + - -  [1 - (1 + V l t ) e -  (5.2) 
Pl 

For the special initial condition, (2.11), the average position and velocity 
vanish at t = 0 and therefore are zero at all times. 

The two-time correlation functions for the fluctuations in the velocity 
and position of the tagged particle may be determined by solving Eqs. (4.4) 
and (4.5). These equations are formally identical to the equations for the 
average quantities, R i and Vi; the only difference appears in the initial 
conditions. The two-time correlation functions are then given by 

Gi) ( t , 'c)= A i k ( - t )  G ~ ( 0 , ~ ' ) + - -  A k , -  ( 1 - e  + 2aklte -~t  
Pl Pl 

qa ) X [ G~ a (0, T) -- aim Gqj (0, '7")] (5.3) 

and 
va qa va qa Gij (t,'c) = aikG~j (O,'r) + Tik(t)[Gkj (O,'r) -- ak, G O. (0,~')] (5.4) 

It is interesting to observe that the velocity autocorrelation function 
G~V(t, r) does not decay to zero for long times as in equilibrium. In fact, 
letting t ~ oc in Eq. (5.4) for a = v, 

vv qv aik vv l im G,~ (t , r)  = aikGl~2 (O,'r) + - - G k j  (0, ' r )  (5.5) 
t--~ oo Pl 

This result may be interpreted in the following way. Since the average 
velocity is V = u(R), it may be expected that GoVV(t, ~) has as its long time 
limit 

t)/) lim Gq (t, z) = lim (ui(q(t + ,t'))vj(,r)) 
t---~ ~ t----~ o o  

= aik lira (qg(t  + r)vj(~-)) (5.6) 
t--> o0 

or, 

12t? ~ O0 ! 1919 z Gq (oe,,r) = agk(qk(r)Vj(r)) + dt aikG~j (t ,I") (5.7) 

It is seen from Eq. (5.4) that the right-hand sides of Eqs. (5.5) and (5.7) are 
indeed identical. Thus, the velocity of the tagged particle equilibrates with 
the local flow field, but since the latter depends on the position of the 
particle, correlation with its initial velocity persists indefinitely. 

The set of Eqs. (4.11)-(4.13) determining the equal time correlation 
functions in the laboratory frame, G0~'B(0,z), is quite complicated. It is 
convenient to solve instead the set of Eqs. (4.6)-(4.9) for the rest frame 
correlation functions, and then transform the result back to the laboratory 
frame. In particular, the velocity autocorrelation function is immediately 
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expressed in terms of the equal time correlations in the rest frame by 
rewriting Eq. (5.4) for a = v as 

/)t) tg~ I) Dq Gij ( t,'r) = Tig( t)[ Rkj (O, r) + a/Rk'~ (O,-r) ] + aikRjk (0,~') + aikajzRff (O,'r ) 
(5.8) 

All four equal time correlation functions R~B(0, z) for a = q, v and/3 = q, v 
appear in Eq. (5.8). However, the property (2.9) and Eqs. (4.6) and (4.7) can 
then be used to express G~V(t, .c) entirely in terms of the velocity autocorre- 
lation function R,~(0,'r), with the result 

vv = ~ fo~ds[aikTfl(.r s)+ajtTik(.r s) lRk,(O,s  ) aij (t,$) Tik(t)Rkj (O,.c) + . . . .  

+aft[ Tik(t ) -- 6ik] fo 'dse-~'(r-S)Ak,( 'c-  s)R.7(O,s ) (5.9) 

The problem is now reduced to solving the single Eq. (4.8). However, as 
indicated in Eq. (4.14) the equal time velocity correlations in the rest frame 
are simply proportional to the pressure tensor components. Consequently, 
Eq. (5.9) may be expressed as 

PGi~ ( t,'r ) = Tik( t)Pkj('r ) 

"Jr fords ([aikTjl('r - s)-t- o T i k ( r - -  s)] 

+aj,[ Tin(t ) - 6in]e-~'('-~)Ank(r -- s)}Pk,(s ) (5.10) 

The pressure tensor components are calculated in the second part of 
the Appendix. It is found that P~j(t) is the sum of three exponentials in 
time, two of which decay and one which grows, for all values of the shear 
rate. The dominant part for P3 t >> 1 is given by Eq. (A.36), 

eij(t)/p(O) = Bo.eZ" (5.11) 

where B~j and z~ are functions of the shear rate defined in the Appendix. 
Equation (5.10) may be expressed finally as 

= + ) - cg(oo, )] (5.12) 

where, for pff>> l, 

= e ( , )  
[ ClSij + C2(aij + aft) + (C 3 - C4e-~L~)aikajk] 

(5.13) 

G O. ( ~ , r )  = ---O---- [Csaij + (C6 - -  Cae )aikajk ] 
The { C/} are independent of ~ but are functions of the shear rate, and are 
given in the last section of the Appendix. 
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An alternative form for Eq. (5.12) that expresses the tensorial form of 
G~ ~ more explicitly is 

G~(t ,~)  = G,(t,~)8 0 + c2(t,~)ay + c3(t,,)aji + G4(t,+')ai~aj~ (5.14) 

The scalar functions { Gi(t, r)} may be identified in terms of the constants, 
{ c,} ,  

Gt( t , r  ) = C1e-~, t 
9 

G2Ct,+ ) = pC'r--) E cs + e-< ' (C2 - C , t -  C+)] 
P P(+) (5.15) 

G3(t, "~) = e -  ~"C2 
0 

G4Ct,..r) ..= PC"r__) [ C 6 - C4e-Z,+ + e-~. ' (C,  - C2 t -  C6) j 
p 

The fact that G 2 :~ G 3 for t > 0 means that G~( t ,  r) is not a symmetric 
tensor, owing to the presence of the shear in the fluid. To illustrate this, 
consider the antisymmetric part of G~( t ,  ~-): 

Aij(t, 1" ) ~-- G~v( t , I  ") - -  Gj~Ct,'r) = [G2C/, 'P ) - -  G3(t , 'r)](ai j  - -  aft) (5 .16)  

To be specific, let the flow velocity be in the x direction and the gradient in 
they  direction, a O. = aSix6jy. Then Figure 1 shows OAxy(t, r ) /p ( r )  for several 
values of the shear rate. These results may be interpreted qualitatively as 

3.0- 

2,0- 

<~ +.o- 
o.. 

0.0 

olu 3 = 2.0 

a/u3= l .O 

alv3= 0.5 

u I t .  

o.o s  ,+'.o +'o +'.o ' Jo.o 

Fig. 1. pAxy(t , r ) /p(r) ,  Eq. (5.16), as a function of t for several values of a/v  3. 
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follows. At t = 0, Axy = 0 since G~(0, T) is symmetric. For t > 0 particles 
with an initial velocity component along the positive y axis will have an 
increase in the x component of the velocity due to the flow field. This arises 
from the second term of Eq. (2.22) which is an inertial force, F x --- avy. In 
contrast particles with an initial velocity component in the x direction will 
have no corresponding increase in the y component of the velocity. Conse- 
quently, Axy(t, ~c) increases for t > 0. However, this increase saturates after 
a time 1/~, l, owing to collisional damping of the initial velocity. On the 
average a particle will move to the position qi(t + ,c),~qi(.r)+ v~(,r)v~ 1. 
Accordingly, the large t limit should be given by Eq. (5.6) with this value of 
q~(t + ,r), 

Axy (t, +-)------> (a [  y(+-) + PC 'vy( +r ) lvy(~r)) 
Pit>> 1 

which is indeed the correct result, (5.5). 
Much of the dependence of Gff+(t,'r) on the shear rate is simply due to 

convective transport of the particle by the fluid. Much of this can be 
eliminated by the transformation to the local rest frame. The rest frame 
velocity autocorrelation function is then simply given by 

vv = e 6ik(t)gkj(O,'r) (5.18) R,j 
In contrast to G~V(t,-O, this function clearly decays rapidly to zero. It is 
shown in the following paper that the diffusion coefficient for this system is 
related to the time integral of the rest frame velocity autocorrelation 
function in a way similar to the Green-Kubo expression for linear trans- 
port. 

6. DISCUSSION 

The model considered here is idealized in many respects (e.g., low 
density, Maxwell molecules, uniform shear flow). However, it serves as a 
nontrivial example of a highly nonequilibrium system for which the equa- 
tions for fluctuations and transport can be determined unambiguously and 
without phenomenological considerations. Of particular interest is the veri- 
fication of the relationship between the equations for transport and the 
dynamics of fluctuations as indicated in Eqs. (1.4)-(1.6). The structure of 
these equations is similar to that for equilibrium fluctuations and in fact 
may be interpreted as a generalization of Onsager's assumption on the 
regression of fluctuations. Its validity here is perhaps not too surprising, 
since the macroscopic equations, (1.4), remain linear even for large shear 
rates due to the uniformity of the flow field considered. However, these 
results are in agreement with a more general statement of Onsager's 
regression hypothesis for nonequilibrium states whose macroscopic dynam- 
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ics is possibly nonlinear. (4'8) The equation for the equal time fluctuations, 
(1.6), relates the regression matrix, ~", to the microscopic degrees of 
freedom as expressed by the "noise" term, 9 .  In this sense it may be 
considered as a type of fluctuation-dissipation relation. Most discussions of 
such relationships for nonequilibrium systems are restricted to stationary 
states. The viscous heating here, however, leads to a nonstationary state 
and the resulting time derivative in Eq. (1.6) introduces a qualitative change 
in the relationship of J to 2 from that in stationary states. 

The interpretation of _~ as a noise amplitude is confirmed in the 
following paper where a Langevin description for tagged particle motion in 
uniform shear flow is derived. The tensor, D~j(t), that characterizes ~ ,  
(Eq. 4.17), may be written in the form 

2v~kBT(t) 
D,y - M d9 (6.1) 

In equilibrium d 0 reduces to the identity tensor, 60. More generally, d/j is 
not diagonal and its elements are functions of the shear rate. The difference 
between d~y and 60 reflects the extent of nonthermal noise in the system. If 
each small element of the fluid could be considered in a local equilibrium 
state, the noise in the global nonequilibrium state would be the same as that 
in equilibrium, except with the macroscopic variables replaced by their 
nonequilibrium values. Such an approximation would correspond to Eq. 
(6.1) with d~j = 6~y. Here d/j is given by Eq. (4.15) with additional contribu- 
tions from the irreversible stress tensor. These contributions indicate the 
relative importance of differences between the true ensemble and the local 
equilibrium ensemble. The elements of d/j are readily calculated from the 
results in the Appendix. For the case of shear flow in the x direction with 
gradient in the y direction, dxx and dxy are shown in Fig. 2 for the range 
0 < a/p 3 < 2. The dashed line (---) denotes the value of dxy for a Newto- 
nian fluid (constant shear viscosity). Consequently, at a/u 3 = 2 the fluid is 
highly non-Newtonian but the maximum nonthermal component of the 
noise is only about a 20% contribution. For very large shear rate dxx has a 
maximum of 1.44. Similar deviations from local equilibrium noise have 
been found in other contexts. (~7) 

In the following paper this problem is reconsidered for the case of a 
massive tagged particle in the low-density gas. A nonequilibrium Fokker- 
Planck equation is obtained from the Boltzmann-Lorentz equation, to 
leading order in the mass ratio. The associated Langevin equations are 
identified and lead to the same set of equations, (1.4)-(1.6), for the 
dynamics of fluctuations (although with different values for Pl and u2). The 
possibility of diffusion in the Lagrangian frame of the fluid is investigated 
as a function of shear rate. 



270 Marchetti and Dufty 

Fig. 2. 
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dxx and d~y, Eq. (6.1), as a function of a / v  3. The dashed line denotes d~ v for a 
Newtonian fluid. 

APPENDIX A 

1. Equations for the Rest Frame Correlation Functions 

The velocity moments  of the nonlinear Boltzmann operator and of the 
bilinear Bol tzmann-Lorentz  operator can be calculated exactly for a gas of 
Maxwell  molecules. In particular the first two moments,  which are needed 
in the equations for the position and velocity correlation functions in the 
rest frame, are evaluated here, with the results 

and 

f dv viJ [ if ,A ] = -v l fdvv iA(x  ) 

1 2 /du I ~ - -  (/-"1 -[- P2)/du "~- "3 (~/jF2/du ~ (x) 

(A1) 

Pl - -  P2 ~1 + - -  + 
78 P 

(A2) 
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where A is any function of the phase space variable x = (q, v) and the 
irreversible stress tensor t,~ is defined in Eq. (4.10). The parameters Pl and 
P2 are eigenvalues of the Boltzmann-Lorentz operator. Their definition is 
given in the following. 

The proof of Eqs. (A1) and (A2) follows closely the one presented in 
Appendix C of Ref. 15. The first moment, given in Eq. (A1) is considered 
first. By making use of the symmetry properties of the collision operator, 
Eq. (A1) can be rewritten as 

f dvviJ [ f',A ] = f dv dr, f'(v, ,t)A (x) fo ~ db b [ v -  v,[ 

2qr ~ 

x f0 dq, (vi - v;) (A3) 

Here, ~i denotes the velocity after the collision. Introducing center-of-mass 
and relative velocities, 

( J  = l ( V  -Jr- Vl) , g = V -- V, (A4) 

Eq. (A3) becomes 

f avv,J[ f',A ] = f avav  f'(vl ,Oa(X) fo dbbg fo2"dO �89 - g, ) (AS) 

Now let ~ = gi cos 0 + aig sin O, where a is a unit vector orthogonal to g. 
Then, since f2o'd,# a i = O, 

f dvviJ[f',A] = f dvdv~f'(vl,t)A(x)gdrfo~ (A6) 

For Maxwell molecules, f~db bgh(O) is independent of the velocity, for any 
function h. Thus 

f dvviJ [ f',A ] = v2 f dvdvl f '(vl , t ) A ( x ) ( 1 ) i _  /)1i) 

= - . , f a x  v,A (x) (A7) 

where the vanishing of the average fluid velocity in the rest frame has been 
used, and 

= ~~ bg(1 cos 0 ) P l nTr (A8) 
dO 

o r  

t, , -- 7rno2( Vo/ m) '/21.19 (A9) 
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Here, V o and a are the parameters characterizing the Maxwell potential, 

V(r)  = Vo(a / r )  4 

The second moment (A2) can be evaluated in a similar way. Using 
fg~depaia j = qr( Sq - gigj/ g2), it becomes 

/ d v  t~it)jS [ f ' ,A 1 

= f dvdvlf ' (v , , t )A(x)((giG j + gjGi)s - 1) 

o r  

/ dv vivjJ [ f ' ,A ] 

- Vln fdvdv, f '(vt 

- 3 ( g i g j -  �89163 } (AI0) 

, t )A (X)(Di'D j -- l)liDlj ) 

VZn f dvdv, f ' (v , ,  t)A (x) 

- - ' 8  I v 2 +  v 2 -  2 v , v , ) ]  )( [13it)j q- *)lit)lj (t)i'Glj "~- I)j121i) ~ ij~ 

where v I is defined in Eq. (A8) and 

o r  

v 2 = ~rns bg sin20 

(All) 

(A12) 

v 2 = 3~rno2( Vo/m)~/21.23 (A13) 

The cross term in Eq. (AI 1) vanishes upon integration over v 1 , Making use 
of the definition (4.10) of the irreversible stress tensor, Eq. (A2) is then 
obtained. 

When A = f '  the operator in Eqs. (A1) and (A2) reduces to the 
nonlinear Boltzmann operator. The right-hand side of Eq. (3.5) describing 
the time evolution of the pressure tensor is then immediately evaluated by 
substituting A = f '  in Eq. (A2). The result is 

m f av v, vfl[ f', f '  ] = - v3(P~ - 6~jp) (A14) 

where v3 is found to equal 2 ,  2. When Eq. (A14) is substituted on the 
right-hand side of Eq. (3.5), Eq. (3.6) is obtained. 
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The set of Eqs. (4.2) and (4.3) for the two-time position and velocity 
correlation functions in the rest frame, R~jB(t, .c), are obtained my multiply. 
ing Eq. (2.20) with v i and q~ and integrating. The right-hand side of Eq. 
(2.20) gives no contribution for a = qi because the velocity integral of the 
Boltzmann-Lorentz operator vanishes (i.e., 1 is a left eigenfunction with 
zero eigenvalue). Equation (4.3) is then immediately obtained. For a = v~ 
the equation becomes 

~--at R~jB(t' "r) + aikR~f(t  , ~r) = f dx,dx2v1,BzJ[ f ' ,  C'  1 

f ' , 
= - g l  dxldx2vliB2jC (xl , t +  ~-; x 2 ,  ~- ) 

(A15) 

Finally, in the case a = /3  = v the resulting equation is 

& R~jv(O, r + aikR~f(O, "c) + aj~Rk~ (0, "c) = f dx vivjJ [ f ' ,  h' 1 (A20) at 

Making use of Eq. (A2) for A = h', Eq. (4.8) is immediately obtained. 

o r  

+ + 

Similarly, the equations for the equal time position and velocity 
correlation functions in the rest frame, 

R~B(O, "r) = f dx aifljh'(x, "r) (A17) 

are obtained by multiplying Eq. (2.19) with vi and qi and integrating. 
Again, for a = fi = q the right-hand side of Eq. (2.19) gives no contribution 
and Eq. (4.6) is obtained. Choosing a i = v i and fig. = qj gives 

a vq vv vq a--t Rij (0, "r) -- Ajk( 'r)Rkj (0, "I") + aikRkj (0, ~) 

f dx vNjJ [ f '  h' ] 

- -  v q  - - ~ , , R g  (0,~-) (AI8) 

where use has been made of Eq. (A1) in writing the second identity. The 
qv equation for R 0. (0, ~-) is immediately obtained by observing that 

Rv~'B(O, ~r) = Rfi~(O, ~) (A19) 
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2. Evaluation of Pg(t) and p(t)  

The coupled equations for the pressure tensor and the pressure are 
given by Eqs. (3.3) and (3.6): 

0p _ 2 (A21) Ot ~agPg 

( ~ t + v a ) P i j + a i k P k j + a j k P i k = v 3 8 g p  (A22) 

These equations are not independent since P~k--3p. Consider first Eq. 
(A22) and make the substitution 

eg( t) = Ai~( t)Ajt( t)fik,( t) (A23) 

where Ag is defined by Eq. (2.15). Then the equation for ~j is 

0 ( -~  "~-PB)~j ~- P3Aik( - t )hjk(-- t )p( t)  (124) 

Integration of this equation then gives Pg(t) in terms of the pressure 

Pij(t) = Kg(t)p(O) + fotd~ Kg(t - z)v3p(~" ) (A25) 

with 
-- p3 l Kg(t) =-- e Agk(t)Ajk(t ) (A26) 

Here, the initial condition Pg(O)=p(0)Sg has been chosen for simplicity. 
To proceed it is convenient to take the Laplace transform of Eqs, (121) and 
(A25) to get 

zfi(z) - p(O) = - ~aijeij(z) (A27) 

fig(Z) = g g ( z ) [ p ( 0 )  "b P2fi(Z) ] (A28) 

where the tilde denotes the transform of the corresponding time-dependent 
function. This set of linear algebraic equations is easily solved to give 

(Z "[- P3) 2 q- 2a2/3 
f i (z)  = 19(0) D(z )  (A29) 

p(o) 
fig(z) - D(z )  [(z + u3)26g- - (z + 1,3)(ag + aj,) + 2aika/,] (A30) 

with 

D(z )  =~ z ( z  + g3) 2 -  2a2u 3 (A31) 
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The cubic form, D ( z ) ,  is expressed in terms of its roots by 

D ( z )  = (z  - z , ) ( z  - z2) (z  - z3) " 

where 

(A32) 

Z 1 = /p3~k(a/P3) 

Z2 = -- P3 Z~kk p 3a + 1  + i 2 - ~ - s i n h 3 a \ 7 7 !  ( A 3 3 )  

Z 3 ---~ g~ 

The dagger in the last equation denotes complex conjugation, and 

X(x) = 4 sinh2[ ~ c~ (x)]  
(A34) 

o~(X) = c o s h - l [  1 + 9x 2] 

The constants, z 1, z> and z 3 are the locations of the poles of both ~(z) and 
/;0-(z), and represent the only singularities of these functions in the complex 
plane. The real part of z 2 and z 3 is negative for all values of the shear rate, 
a, and leads to exponentially decaying components in time. The character- 
istic time for such decay is of the order of v f  1. In contrast, the real part of 
z~ is always positive, and leads to an exponential growth in time. 

While it is straightforward to invert the Laplace transform in Eqs. 
(A29) and (A30) for the complete time dependence of p ( t )  and ffij(t), only 
the results for p3 t >> 1 will be given here. For such times the exponentially 
decaying components may be neglected, and the dominant behavior is 
found to be 

p ( t ) / p ( O )  ---> A e  z'' (A35) 

with 

A =  

Pij( t ) / p ( O )  --> Bije z'' (A36) 

(Z 1 "{- /23)2 --}- 2a2/3 
(z, - z2)(z , - z3) (A37) 

1 [(z, + v3)28,j - (z, + v3)(a 0 + aji ) + 2aikajk l 

(A38) 

The temperature is determined from the ideal gas equation of state, 
p ( t )  = nk  B T( t ) .  
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3. VELOCITY AUTOCORRELATION FUNCTION 

The time-independent functions of the shear rate, C i, in Eq. (5. t 3) for 
the velocity autocorrelation function are given by 

C 1 = 

z I --[- 1,3) 2 

(z  I dr- /23) 2 -1- 2 a 2 / 3  

C 2 
(Zl "4- /23)(//3 --  /21) 

(Z 1 -'1- P l ) [ ( Z I  q- /23) 2 -t- 2a2/3] 

/21(Zl q- /23) 2 "t- ZI(Z 1 q- /21) 2 -- a l ( g  I "Jr /21)(Z, "4- /23) 
C3 = 2 

ZI(Z 1 q- /21)2[(21-1- p3) 2 "4- 2a2/3] 

C 4 = 2 { z 2 z 3 ( z  2 - z3) (z  I -1-/,,3) 2 - ZlZ3(z l  - z3) (z  2 4-/23) 2 

(A39) 

-'l- ZIZ2(Z 1 -- Z2)(Z 3 "1- /23)2)( /21Z1Z2Z3(ZI-  Z3)[ (Z  1 "[- /23)2+ 2a2/3] } -~ 

z I + 2/2~ 
C s - C] /2~(z, +/2,) 

C 6 
(gl  "~ /23)[Z2(/23 - /21) -1- 2/2'/23(Z' + /23) 1 

z,vl(zi  +/2,)Z[(z,  +/23) 2 + 2a2/3]  
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